Q1: Given the alphabet $\Sigma = \{0, 1, 2\}$, let L be the language denoted by the regular expression $(0|1)^* \ 2 \ (0|1)^*$. I attempted to work my way backwards from NFA/DFA to a regex. And, failed. A FSM for this expression would look like the following:

![FSM Diagram]

Q2: $L = \{ a^n b^m \mid n \geq 1, m \geq 1, n \cdot m \geq 4 \}$

The minimum choices for n and m are: $1 \ n \ & \ 4 \ m$, $4n \ & \ 1m$, $2n \ & \ 2m$. So $a b b b b \mid (a a a \ a) \mid (a a b)$ /* spaces for clarity */

But we’re not done yet, n and m can be larger than the values above so each set of chars could be followed by zero or more of the same character. So $(a a^* b b b \ b^*) \mid (a a a^* \ b \ b^*) \mid (a a^* b \ b^*)$

$L = $ all strings having at least two occurrences of substring bb. Note that bb fits the criterion.

So this is telling us that bb is part of the solution! We can have any number of a’s or b’s in the beginning and end of the string and bb or two “other” occurrences of bb.

(a|b)* (bb | (bb XXX bb) (a|b)* and xxx is any number of a’s or b’s in between!

(a|b)* (bbb | (bb (a|b)* bb) (a|b)*

$L = \{ w \mid w=y b b a^n, \ n \geq 1, \ y \in \Sigma^* \}$

So this is telling us that y is zero or more occurrences of a or b and a^n is the same as aa^* (a|b)*bbaa*
Q3: “all strings that do not have a pair of ones separated by an odd number of symbols.”

Create the reverse of this, find the FSM and then reverse the states on the FSM.

Q4: $a^m a^*$ is the form of the regex. So, you would apply the $\{a\}$ definition m times and the $*$ definition. It is alright if the value m is unknown, it is just a constant value.

Two or more consecutive a’s is $(aa) (aa)^*$ and you would begin and follow this regex with $(a|b)^*$. Use the $\{a\}$ definition and the $*$ definition again along with the union definition for $a|b$.
Q5: Use the state elimination method to convert the following automaton to a regular expression. Show all your steps, and be sure to note the final regular expression that results.

1. Modify to create a unique start and end state

2. Eliminate state 1: path from s to 2 is \(b*a \); path from 2 to 2 is \(ab*a \)

3. Eliminate state 2: concatenate path from s to 2 with \((ab*a)^* \) (loop label) and path from 2 to 3

4. Eliminate state 3: concatenate path from s to 3 with \((a+b)^* \)